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Continuum description of noiseless diffusion-limited aggregation
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We develop a continuum theory for the compact-growth phase of noise-reduced diffusion-limited
aggregation (DLA). Its essential feature is a dynamic argument determining the selected growth
velocity of the cluster arm tips. With one additional assumption, a parameter-free description is
obtained. This description agrees well with the overall shape of numerically simulated clusters,

containing up to several tens of thousands of particles.

It also provides decent predictions for

the step sequences on the cluster arms and for the numerical value of the tip growth probability.
Finally, this theory demonstrates that noise-reduced DLA and viscous fingering, having different
growth exponents, belong in two different universality classes.

PACS number(s): 68.70.+w, 61.43.Hv, 68.10.—m

Diffusion-limited aggregation (DLA) [1,2] has become
a paradigm for fractal growth processes over the years,
mostly because it can be easily investigated numerically
while giving rise to nontrivial scaling properties of the
growing cluster. Nevertheless, our analytic understand-
ing of DLA and related growth models remains limited so
far [3,4]. This situation has led to various simplifications
of the model such as the introduction of noise reduction
[5,6] and of branchless DLA [7,8], which were then stud-
ied analytically on varying levels of sophistication [9-12].

Recently, Almgren, Dai, and Hakim presented an ana-
lytic theory for the scaling behavior of anisotropic Hele-
Shaw flow [13], i.e., viscous fingering. This important
work has already become an essential ingredient of an an-
alytic theory describing the entire needle crystal in three-
dimensional dendritic growth [14]. We will now employ
it to set up a parameter-free continuum theory of DLA
in the zero-noise limit.

Almgren et al. consider Laplacian growth with
constant-flux boundary conditions at infinity and with
fourfold anisotropy of the surface tension. Assuming that
a four-petal structure evolves whose arm lengths scale
with time as ¢ ~ At*, they conclude that the arm widths
must scale as y ~ At~ (which restricts the growth ex-
ponents to % < a < 1). They then approximate the

growth rate on the arms by that of a four-spoke model
[15]:
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which allows one to immediately derive an expression for
the full finger shape
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The crucial step in determining the exponent « is the
assumption that velocity selection of the finger tip is gov-
erned by the anisotropy of surface tension as in dendritic
growth, which leads to the requirement

P’V = const , (4)

where p is the radius and V the velocity of the tip. Be-
cause V ~ dz/dt ~ t*~! and p ~ (dzas/dy"")_1 lo=zip ~
t2=3«, this condition immediately leads to a = 2.

Let us return to noiseless DLA. This aggregation model
is implemented by assigning counters to each perimeter
site of the cluster, in which mass is accumulated continu-
ously according to the DLA growth probabilities [16-18]
and a growth event occurs each time a counter reaches the
value corresponding to the mass of one particle. This is
a deterministic growth model which, besides being inter-
esting in its own right, also gives a reasonable description
of cluster shapes observed in noise-reduced DLA during
their compact-growth phase (whose duration increases
with the noise-reduction threshold m).

When the number N of aggregated particles is inter-
preted as time, noiseless DLA on a square lattice is a
Laplacian growth process with constant-flux boundary
conditions at infinity and fourfold anisotropy imposed by
the underlying lattice. Thus we ought to be able to con-
struct a continuum description from the same ingredients
as Almgren et al. Equations (1)—(3) should continue to
hold. There is no surface tension, however, so we cannot
expect Eq. (4) to be valid. But it is easy to guess at a
substitute. What surface tension does in the Hele-Shaw
problem is to provide a microscopic cutoff for interface
fluctuations. In noise-reduced DLA, this cutoff is given
by the lattice constant and noise reduction essentially
serves as an amplifier of lattice anisotropy. Therefore, it
is tempting to conjecture that again the (anisotropy of
the) small-length cutoff is responsible for shape and ve-
locity selection in noiseless DLA, and the most natural
assumption for the tip radius is then

p ~ const , (5)
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where the constant should be on the order of the lattice
constant. Of course, we know from extensive numeri-
cal simulations of both noise-reduced [9] and noiseless
[16-18] DLA that the arm tips look sharp on length scales
that are much larger than the lattice constant, which once
more suggests that (5) holds true.

An immediate consequence of (5) is @ = 2. We men-
tion in passing that this is an upper limit for growth pro-
cesses, because larger values of @ would mean decreasing
tip radii. The true range of a is thus % <a< % [19].
Expanding formula (2) with o = 2 about the tip, we

obtain
2\%143% , .
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which relates the tip radius p to the two yet unknown
constants A and B:
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Clearly, we can map the time scale on the particle number
N by calculating the total cluster area

Tei
Na? = 8/; " de y(z,t) = 2nBt. (8)

(The second equality in this equation holds for arbitrary
a.) Using Egs. (6) and (8), we can write
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which eliminates all free parameters but p from the equa-
tions. Now there is definitely no microscopic theory that
would allow us to determine p in a similar fashion as the
constant on the right-hand side of the selection criterion
(4) when surface tension provides the small-length cut-
off. So it seems that the tip radius can only be found by
fitting to numerical simulations. We shall, however, see
that this is unnecessary, in a sense. In fact, since each
cluster is grown from a one-particle seed, a least-biased
guess would be that Eq. (9) continues to hold for this
minimum cluster size, which provides x4, (N =1) = a/2,
determining p unambiguously:

3\?2
p= (ﬂ) a=0.228a; (12)
hence

zup(N) = 5 N/, (13)
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Figure 1 compares the shape described by (13) and
(14) with clusters of various sizes. Obviously, the overall
agreement is quite good. Even more impressive is a com-
parison of the armlengths L/a of a few simulated clusters
with z4,/a as calculated from Eq. (13), which is given
in Table I.

For the first two clusters, the agreement is better than
1%. The three larger clusters have already started to
develop sidebranches due to the influence of the outer
circular boundary in the simulation (for an explanation
of this effect see [18]); nevertheless, even in these cases
the discrepancy does not get worse than roughly 2%.

Of course, the description by Eq. (14) must fail close
to the origin of the coordinate system, simply because it
predicts an overlap of the four petals of the cluster, which
is a consequence of the infinite slope due to the square
root in the shape expression. Since in the region where
Eq. (14) is to be valid the inequality y(z,t) < z must
be satisfied, an estimate for the lower bound z, of this
region follows from setting y(z,,t) = z¢, which yields

wlG)

For large N, the right-hand side can be approximated
by the function value at * = 0, which shows that z,
approaches a finite limit

2, 9 [TR)
a N-ooo 327 F(g)

2
} A 2.47, (16)

where we have used f(0) = 3T'(3)T(3)/T(3). Thus the
relative range of validity of our continuum approximation
increases with time, as x¢/z4;p — 0 for N — oo.

Let us examine next what predictions we can make
about the step lengths in the stable needle staircase near
the cluster tip discussed by Batchelor and Henry [16].
First note that an expansion of (2) near the tip yields

B 1/2 zl/a—B/Z +0 (zx/a—s/z) }

y= aAl/e (zeip — T) tip tip

(17)
so the very existence of a stable staircase requires o = 2;

otherwise y would remain time dependent in the vicin-
ity of the tip and the step lengths would not approach

TABLE I. Cluster armlengths: simulation (L/a) and the-
ory (ziip/a).

N L/a Tiip/Q
4273 132 131.66
8757 211 212.43
18625 344 351.32
30109 473 483.91
53217 698 707.41
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FIG. 1. Comparison of cluster shapes with the analytic prediction Eqgs. (13) and (14). The cluster arms are represented as
collections of squares, while the shape from continuum theory is given as unbroken lines. Particle numbers in the clusters from

top to bottom: N = 4273, N = 8757, and N = 18625.

time independent values. Constancy of the tip radius p is
therefore equivalent to the existence of a stable staircase.

Denote by z; the position of the ledge of the kth step
from the tip (zo = Ztip); then the staircase must asymp-
totically satisfy

a~y(or) - y(orm) (k> 1). (18)
Figure 2 shows a closeup of the tip region of the second
cluster from Fig. 1 together with the approximating con-
tinuous contour. Observe that near the tip, the intersec-
tion points of the contour with the steps have distances
slightly less than a in the y direction, i.e., the asymptotics
(18) are not quite satisfied by the computed shape.

Inserting Eq. (18) into the parabolic profile, Eq. (6), we
get an asymptotic recursion relation for the step lengths
by = (Tr—1 — z1) /a,

9g 1 1/2

a

b ~ (7 ze,.) (k> 1,20p — T < Tpip) - (19)
i=1

The lowest-order solution to this recursion relation is
4y ~ k a/p (k > 1). If we assume (18) to hold for
all k, we obtain z) = z4ip — (ka)?/(2p) and thus

b = 22,, (2k—1). (20)
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FIG. 2. Magnification of the tip region of the second cluster
from Fig. 1. Note that at the position of the first step, the
continuum shape y(z) ~ %a, i.e., the step barely intersects
the contour. For the following steps, the intersection point
moves downward along the ledge.
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For small values of k, both formulas do not agree too well
with the step lengths obtained numerically (see Table II).
To understand this in more detail, let us obtain the step
sequence via a different approach.

Rather than using the geometric relation (18) we use
dynamic information to compute the staircase. Accord-
ing to Batchelor and Henry [16], if we number the perime-
ter sites starting with 0 at the tip, the growth probabili-
ties along the staircase should satisfy

bi+Lz++HLp—1 £ +Lla2++L,
Y m<mp< Y m. (21)
=1 =1

This immediately translates into an integral formulation
for the continuum model

Ttip 1
/ p(z)dz = (n+§>po, n=12,3,..., (22)
Tz,

where pg is the tip growth probability or growth rate,
while p(z) = (1/a?)dy/dN is the growth probability den-
sity along the cluster arm. The ; on the right-hand side
of (22) accounts for the tip itself.

Both (21) and (22) state that per time unit the same
mass is accumulated on each step, which is intuitively
clear, if the step lengths are to be stable. Next we need
an estimate for pg to utilize Eq. (22) and calculate the ,,.
To this end, we divide the total growth rate, integrated
from the position z,, of the maximum of y(z) to the tip,
by the number of steps, which is Ymqz/a. We then have

a Ttip
Do = / dz p(z) . (23)
ymaz T
Herein, z,, is given by z,, = s,Z4p, where s, is the

solution of s,l,{z/(l —s2)2 — 1f(s) = 0 and Ymae =
3asp,NY3/[r(1 — s,)/?]. Numerically, one obtains
Sm =~ 0.336. Integrating p(z) analytically, we find

_ g4)1/2
Po = (1—123:—) (72_r ——arcsinsfn) N7Y3 = uN—1/3,

(24)
From this equation, we get a numerical value for the pre-
factor u = 0.359.

The positions of the step ledges are then given by z; =
SkTtip, Where

82 = sin (g - 27rp,N”'1/3) , (25)

s2 = sin (a.rcsins,zc_1 — 47rp.N_1/3) , k=1,2,3,....
(26)

Only the second equation describes step positions,
whereas the first corresponds to thetip itself, which must
occupy a finite-length interval about x;;; in a continuum
model (i.e., o < x4;p here). Expanding for large N, we
arrive at

Ly = 0.57%u2 (27)

KLAUS KASSNER AND EFIM BRENER

50

| I | 1
1.4 -
16 o T -

S
o -.\*'*~

S 1.8 - ~ -
2.0 \ L
,22 —] —

T I I T

3.0 3.5 1.0 15

logo(N)

FIG. 3. Tip growth rate po versus cluster size. The dashed
line is a least-squares fit of the form po = uN /3 providing
p = 0.300.

k—1 \ /2
b = 212U + 2mp (2 > ei) . (28)
=0

Since the asymptotics of Eq. (28) must be just Eq. (19),
we have another way to predict p and hence pg: p =
(a/p)/?/(2m) = L. The two predictions of p had bet-
ter be close to each other, and indeed they are, to
within 7 %.

Furthermore, we have compared these analytic results
with numerical simulations, where we can measure the
tip growth rate directly. Figure 3 is a double logarithmic
representation of the numerical pg as a function of cluster
size. Also shown is a fit of the functional relation py =
uN~1/3 to the data. The obtained value p = 0.300 is
lower than the analytic estimates, but the deviation is
less than 20%, which appears reasonable for a continuum
approximation that cannot exactly model the tip shape.

Table II contains a numerical comparison of the step
lengths obtained from Egs. (20) and (28) with the true
step lengths observed in the simulation. For Eq. (20)
and for Eq. (28) with y = 1, the general agreement is
reasonable though not impressive, except for the value
of ¢1, which is completely off the mark. If the measured
value of u is taken in Eq. (28), the agreement is pretty
good for all step lengths. The comparison is limited to
k < 7, because clusters for which the eighth step has
already become stable have yet to be grown.

To conclude, we have shown that a continuum de-
scription of noiseless DLA is obtained from a condition
Eq. (5) which, in complete analogy with the selection cri-

TABLE II. Comparison of numerical step lengths with var-
ious analytic expressions.

k lx (numerical) 1* [Eq. (20)] Ik [Eq. (28)] & [Eq. (28)]

p=13 u = 0.300
0 0.55 0.44
1 3-4 2.19 4.39 3.55
2 7-8 6.58 8.77 7.11
3 10 - 11 10.97 13.16 10.66
4 14 - 15 15.35 17.55 14.21
5 18 - 19 19.74 21.93 17.77
6 22 - 23 24.13 26.32 21.32
7 25 28.51 30.71 24.87
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terion (4), determines the growth exponent a and, once
the constant on the right-hand side of the equation is
specified, the tip velocity dz/dN. Other than in the
Hele-Shaw case, there is no microscopic theory available
that would determine the constant, e.g., from a nonlinear
eigenvalue problem. However, the form of the equation
for the tip position [Eq. (9)], together with our knowledge
of the initial condition, suggests an educated guess, which
leads to a surprisingly satisfactory description. From this
parameter-free theory, we obtain quantitative results for
the tip position that are accurate in the percent regime.
Moreover, the width of a cluster arm, the step lengths
in the vicinity of the tip, and the tip growth rate can
be estimated with decent accuracy. Because the step
lengths are reproduced more accurately with . = 0.300

2165

than with 4 = 1, one might think that the actual value of
p/a should exceed (3/2m)?; however, this corrected value
turns out to describe the total arm lengths worse than the
chosen value. This small discrepancy is due to the facts
that the needle shape employed in calculating the growth
rates is not exact and that the continuum approximation
can only imperfectly model the tip shape.

The most important outcome of our small exploration
may be the demonstration that noiseless DLA belongs
into a universality class that is different from that of den-
dritic growth or viscous fingering, since we obtain a dif-
ferent growth exponent a. In effect, this unambiguously
answers the question—in the negative—whether noise re-
duction may be considered a way to simulate surface ten-
sion.
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FIG. 1. Comparison of cluster shapes with the analytic prediction Eqs. (13) and (14). The cluster arms are represented as
collections of squares, while the shape from continuum theory is given as unbroken lines. Particle numbers in the clusters from
top to bottom: N = 4273, N = 8757, and N = 18625.



